Молекулярная диагностика генетических заболеваний: особенности и методы исследования
Генетический анализ крови – звучит дорого, сложно и долго. Но на самом деле, это уже стандартный метод диагностики в лабораториях. Генетические тесты теперь назначаются для оценки индивидуальной реакции на лекарства, для проверки наследственных заболеваний, установления родства и даже для профилактических целей.
С расшифровкой генома человека в ХХ веке, мы стали понимать, как наш личный “код” влияет на жизнь. Несмотря на споры в научной сфере, мы можем оценить полезность долгосрочных исследований: теперь доступна молекулярно-генетическая диагностика.
В данной статье мы расскажем, как проводится генетический анализ крови и для чего это нужно.
Молекулярно-генетическая диагностика – это новый метод обследования организма, который позволяет точно и быстро обнаруживать вирусы, инфекции, мутации генов, вызывающие патологию, а также делать оценку рисков наследственных и других заболеваний. В то же время это лишь небольшая часть возможностей исследования ДНК.
Наиболее значимым достоинством молекулярно-генетической диагностики является минимальное вмешательство, поскольку исследования проводятся in vitro. Данный метод успешно применяют для диагностики заболеваний у эмбрионов, а также у ослабленных и тяжелобольных пациентов. Кровь из вены является наиболее распространенным материалом для исследования, однако возможно выделение ДНК/РНК из других жидкостей и тканей, как, например, слюны, соскоба слизистой рта, выделений из половых органов, околоплодной жидкости, волос и ногтей.
Молекулярная диагностика – это значительный шаг к персонализированной медицине, поскольку она дает возможность учитывать все особенности конкретного пациента при диагностике и терапии.
Методы молекулярной диагностики находят применение в различных областях медицины. Рассмотрим некоторые из задач и сфер, где используется молекулярная диагностика:
- Обнаружение патологий. Молекулярная диагностика применяется в случаях, когда обычные методы не позволяют определить наличие инфекционного или вирусного заболевания. Она может обнаружить заболевание на ранней стадии, когда нет внешних симптомов.
- Исследование аллергических реакций. Молекулярная диагностика используется для определения аллергии. Она более точна и безопасна для пациента, так как не требует прямого контакта с аллергеном.
- Оценка рисков развития наследственных заболеваний. Молекулярная диагностика помогает выявить опасность для взрослых и детей подвергнуться различным патологиям. Некоторые болезни вызваны мутацией гена, а некоторые — генетическими особенностями. Информация о наличии генетической предрасположенности позволяет оценить риски передачи наследственных заболеваний от родителей к ребенку и профилактику болезней с помощью изменения образа жизни.
- Перинатальная медицина. Молекулярная диагностика может определить состояние здоровья и генетические предрасположенности эмбрионов. Анализ ДНК еще не родившегося ребенка позволяет распознать синдромы Дауна, Эдвардса, Патау, Тернера, Клайнфельтера. Также молекулярная диагностика применяется в области вспомогательных репродуктивных технологий.
- Фармакогенетика. Молекулярная диагностика позволяет определить эффективность препаратов при лечении тяжелых заболеваний, например, онкологических.
- Спортивная медицина. Молекулярная диагностика может помочь выявить спортивные перспективы ребенка и определить, какой вид занятий максимально пользуется здоровью.
Медики с большим интересом относятся к возможностям молекулярной диагностики. Применение персонализированной терапии, учитывающей генетические особенности каждого пациента, позволит избежать побочных эффектов лекарств и снизить затраты на лечение. В США проблема побочных воздействий лекарств входит в пятерку самых распространенных причин госпитализации и смерти.
Генетические исследования обычно проводятся, когда пациент стремится получить информацию о своем здоровье и состоянии организма. Приведем несколько конкретных ситуаций, в которых рекомендуется обращаться к генетическим исследованиям:
- Для установления точного диагноза. Нередко бывает, что пациентам неправильно определяют аллергены или появляется задержка в диагностировании вирусных заболеваний, что может затруднить эффективное лечение. В таких случаях результаты генетического анализа могут быть полезны.
- Для профилактики возможных патологий. Если человек знает о своем повышенном риске заболевания раком или сердечно-сосудистыми заболеваниями, то проведение генетических исследований может помочь ему предпринять соответствующие меры по профилактике таких заболеваний и отказаться от вредных привычек.
- Для повышения эффективности лечения. Например, онкологические заболевания имеют множество вариантов терапии. Если правильно определить, какой из методов будет наиболее эффективным, можно сэкономить время, а иногда — и спасти жизнь пациента.
Кроме того, существует ряд генетических исследований, связанных с планированием и рождением ребенка. Чаще всего родители обращаются к этим исследованиям по следующим причинам:
- Для изучения генетической совместимости родителей, оценки рисков возможных наследственных заболеваний у будущего ребенка.
- Для обнаружения возможных патологий плода в ранних стадиях беременности.
- Для диагностики возможных заболеваний и аллергических реакций ребенка после рождения.
- Для определения того, какие виды спорта, питания и образа жизни наиболее подходят ребенку.
- Для установления отцовства или материнства.
Этапы молекулярно-генетического исследования
При выборе метода молекулярно-генетического исследования необходимо выполнить следующие этапы:
- Взять биоматериал. Кровь пациента чаще всего используется для исследования. Полученный материал маркируется и отправляется в лабораторию.
- Выделить ДНК/РНК.
- Провести исследования в соответствии с выбранным методом.
- Изучить и интерпретировать результаты.
- Выдать заключение.
Методы молекулярно-генетической диагностики – это совокупность лабораторных методов, основанных на анализе генетического материала (ДНК и РНК). Они позволяют определять наличие или отсутствие генетических изменений, а также выявлять наследственную предрасположенность к различным заболеваниям.
Одним из наиболее распространенных методов молекулярно-генетической диагностики является полимеразная цепная реакция (ПЦР). Этот метод позволяет увеличивать количество копий генетического материала для дальнейшего анализа. Также существуют методы, основанные на гибридизации (соединении генетических материалов по определенным закономерностям), например, гибридизационный анализ с использованием РНК-зонда.
Методы молекулярно-генетической диагностики широко применяются в медицине для диагностики наследственных заболеваний, а также в судебно-медицинской экспертизе для определения отцовства или материнства. Они позволяют получить точные и надежные результаты, а также ускорить процесс диагностики и лечения.
Молекулярная цитогенетика является эффективным методом выявления наследственных заболеваний, врожденных пороков развития и психических отклонений. Суть метода заключается в исследовании хромосом при помощи специальных микроматриц, которые наносят на ДНК-чипы. Один из основных этапов анализа - извлечение лимфоцитов из образца крови, которые затем помещают в питательную среду на 48-72 часа. После прохождения указанного времени производится их изучение. Этот метод назначается в основном для изучения причин бесплодия и невынашивания беременности. А также для установления диагноза у детей при подозрении на врожденные заболевания. Молекулярная цитогенетика очень точна, однако, поскольку результат можно получить только через 20-30 дней после проведения анализа, ее можно назвать трудоемкой и длительной процедурой.
Метод имеет как свои преимущества, так и недостатки. Одно из основных достоинств состоит в его специфичности, поскольку при помощи молекулярной цитогенетики можно выявить лишь небольшое количество патологий, включая аутизм. Однако, при этом метод достаточно точен и во многих случаях не допускает ошибок.
Метод полимеразной цепной реакции (ПЦР) – это фундаментальный и, до сегодняшнего дня, наиболее распространенный метод в молекулярной диагностике. Изобретенный в 1983 году, этот метод отличается высокой точностью, чувствительностью и скоростью проведения исследования. Его использование позволяет выявлять ряд патологий, среди которых такие, как ВИЧ, различные вирусные гепатиты, инфекции, передающиеся половым путем, туберкулез, боррелиоз, энцефалит и многие другие.
Подход для проведения диагностики на базе ПЦР предполагает выбор участка ДНК и многократное его дублирование с помощью специальных реагентов лаборатории. Для проведения диагностики исследуются различные биоматериалы, среди которых кровь, слюна, моча, выделения из половых органов, плевральная и спинномозговая жидкость, ткани плаценты и др.
Популярный молекулярный метод исследования под названием флуоресцентная гибридизация (FISH) обеспечивает возможность исследования нуклеотидных соединений в определенных участках хромосомы. Для этого используются специально меченные флуоресцентными маркерами короткие ДНК-последовательности, так называемые зонды. Такой подход в исследовании атипичных генов стал популярным не только в онкологии для обнаружения остаточных злокачественных клеток после проведения химиотерапии, но и в пренатальной диагностике для выявления вероятности возможности развития у плода врожденных пороков, а также в гематологии.
Возможность проведения анализа пообещала все большую чувствительность и точность в выявлении поврежденных фрагментов ДНК с погрешностью около 0,5%. Кроме того, важно учесть, что результат тестирования можно получить достаточно быстро — в течение не более 72-х часов. Тем не менее, следует отметить, что данная методика имеет несколько недостатков в том числе - FISH очень специфичен и может служить лишь для подтверждения или опровержения предполагаемого диагноза.
Метод микрочипирования основан на использовании зондов, помеченных флуоресцентными последовательностями ДНК, которые извлекаются из биоматериала пациента. Эти зонды затем сравниваются с образцами, размещенными на микрочипе, который представляет собой стеклянную, пластиковую или гелевую базу, способную вместить тысячи микротестов, длиной от 25 до 1000 нуклеотидов. ДНК-микрочип может использоваться для анализа любого биоматериала, из которого можно извлечь образец ДНК/РНК.
Этот метод применяется в медицине, в том числе в онкологии и кардиологии для изучения генетической предрасположенности и оценки состояния организма. Он точен и чувствителен, результаты исследования готовы через 4–6 дней после забора материала.
Однако, в России микрочипирование применяют редко, что является его основным недостатком. В западных странах исследования ДНК/РНК уже распространены повсеместно, но в России эту услугу предлагают не все клиники.
Важно отметить, что молекулярная диагностика является неинвазивным и точным методом обследования организма, который нашел применение в разных областях медицины. Однако, информация, связанная со здоровьем и медициной, представлена только для ознакомительных целей и не должна стать поводом для самодиагностики или самолечения.
Фото: freepik.com